Skip to main content

Advertisement

Log in

Huntington’s disease brain-derived small RNAs recapitulate associated neuropathology in mice

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington’s disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ament SA, Pearl JR, Cantle JP, Bragg RM, Skene PJ, Coffey SR et al (2018) Transcriptional regulatory networks underlying gene expression changes in Huntington’s disease. Mol Syst Biol 14:e7435. https://doi.org/10.15252/msb.20167435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588:4297–4304. https://doi.org/10.1016/j.febslet.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK et al (2015) RAN translation in Huntington disease. Neuron 88:667–677. https://doi.org/10.1016/j.neuron.2015.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L et al (2012) A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 8:e1002481. https://doi.org/10.1371/journal.pgen.1002481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Becanovic K, Pouladi MA, Lim RS, Kuhn A, Pavlidis P, Luthi-Carter R et al (2010) Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum Mol Genet 19:1438–1452. https://doi.org/10.1093/hmg/ddq018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A et al (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci USA 97:6809–6814. https://doi.org/10.1073/pnas.120166397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P et al (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 33:2020–2039. https://doi.org/10.15252/embj.201489282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brochier C, Gaillard M-C, Diguet E, Caudy N, Dossat C, Segurens B et al (2008) Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models. Physiol Genom 33:170–179. https://doi.org/10.1152/physiolgenomics.00125.2007

    Article  CAS  Google Scholar 

  9. Creus-Muncunill J, Badillos-Rodríguez R, Garcia-Forn M, Masana M, Garcia-Díaz Barriga G, Guisado-Corcoll A et al (2019) Increased translation as a novel pathogenic mechanism in Huntington’s disease. Brain 142:3158–3175. https://doi.org/10.1093/brain/awz230

    Article  PubMed  Google Scholar 

  10. van Dellen A, Welch J, Dixon RM, Cordery P, York D, Styles P et al (2000) N-Acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington’s disease mice. NeuroReport 11:3751–3757

    Article  PubMed  Google Scholar 

  11. Desplats PA, Kass KE, Gilmartin T, Stanwood GD, Woodward EL et al (2006) Selective deficits in the expression of striatal-enriched mRNAs in Huntington’s disease. J Neurochem 96:743–757. https://doi.org/10.1111/j.1471-4159.2005.03588.x

    Article  CAS  PubMed  Google Scholar 

  12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  13. Durrenberger PF, Fernando FS, Kashefi SN, Bonnert TP, Seilhean D, Nait-Oumesmar B et al (2015) Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm 122:1055–1068. https://doi.org/10.1007/s00702-014-1293-0

    Article  CAS  PubMed  Google Scholar 

  14. Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fourie C, Kim E, Waldvogel H, Wong JM, McGregor A, Faull RLM et al (2014) Differential changes in postsynaptic density proteins in postmortem Huntington’s disease and Parkinson’s disease human brains. J Neurodegener Dis 2014:938530. https://doi.org/10.1155/2014/938530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Francelle L, Galvan L, Brouillet E (2014) Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s disease. Front Cell Neurosci 8:1–13. https://doi.org/10.3389/fncel.2014.00295

    Article  Google Scholar 

  17. Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S et al (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679. https://doi.org/10.1093/bioinformatics/bts503

    Article  CAS  PubMed  Google Scholar 

  18. García-Amado M, Prensa L (2012) Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex. PLoS ONE 7:e38692. https://doi.org/10.1371/journal.pone.0038692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. García-Cabezas MÁ, John YJ, Barbas H, Zikopoulos B (2016) Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat 10:107. https://doi.org/10.3389/fnana.2016.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Gras S, Keime C, Anthony A, Lotz C, De Longprez L, Brouillet E et al (2017) Altered enhancer transcription underlies Huntington’s disease striatal transcriptional signature. Sci Rep 7:42875. https://doi.org/10.1038/srep42875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113:1073–1091. https://doi.org/10.1111/j.1471-4159.2010.06672.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495:474–480. https://doi.org/10.1038/nature11923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. HDCRG (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Article  Google Scholar 

  24. Hervas-Corpion I, Guiretti D, Alcaraz-Iborra M, Olivares R, Campos-Caro A, Barco A et al (2018) Early alteration of epigenetic-related transcription in Huntington’s disease mouse models. Sci Rep 8:9925. https://doi.org/10.1038/s41598-018-28185-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G et al (2006) Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 15:965–977. https://doi.org/10.1093/hmg/ddl013

    Article  PubMed  Google Scholar 

  26. Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    Article  CAS  PubMed  Google Scholar 

  27. Hoss AG, Kartha VK, Dong X, Latourelle JC, Dumitriu A, Hadzi TC et al (2014) MicroRNAs located in the Hox gene clusters are implicated in Huntington’s disease pathogenesis. PLoS Genet 10:e1004188. https://doi.org/10.1371/journal.pgen.1004188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  29. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  Google Scholar 

  30. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS et al (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12:115–121. https://doi.org/10.1038/nmeth.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ivanov P, O’Day E, Emara MM, Wagner G, Lieberman J, Anderson P (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci USA 111:18201–18206. https://doi.org/10.1073/pnas.1407361111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones TR, Kang IH, Wheeler DB, Lindquist RA, Papallo A, Sabatini DM et al (2008) Cell Profiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinform 9:482. https://doi.org/10.1186/1471-2105-9-482

    Article  CAS  Google Scholar 

  33. Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T et al (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157:636–650. https://doi.org/10.1016/j.cell.2014.02.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krol J, Fiszer A, Mykowska A, Sobczak K, de Mezer M, Krzyzosiak WJ (2007) Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 25:575–586. https://doi.org/10.1016/j.molcel.2007.01.031

    Article  CAS  PubMed  Google Scholar 

  35. Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A et al (2012) Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 40:11–26. https://doi.org/10.1093/nar/gkr729

    Article  CAS  PubMed  Google Scholar 

  36. Labadorf A, Hoss AG, Lagomarsino V, Latourelle JC, Hadzi TC, Bregu J et al (2015) RNA sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS ONE 10:e0143563. https://doi.org/10.1371/journal.pone.0143563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385. https://doi.org/10.1016/j.tibs.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I et al (2016) Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci 19:623–633. https://doi.org/10.1038/nn.4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Langfelder P, Gao F, Wang N, Howland D, Kwak S, Vogt TF et al (2018) MicroRNA signatures of endogenous Huntington CAG repeat expansion in mice. PLoS ONE 13:1–20. https://doi.org/10.1371/journal.pone.0190550

    Article  CAS  Google Scholar 

  40. Li L-B, Yu Z, Teng X, Bonini NM (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453:1107–1111. https://doi.org/10.1038/nature06909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  42. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS et al (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9:1259–1271

    Article  CAS  PubMed  Google Scholar 

  44. Marti E (2016) RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol 26:779–786. https://doi.org/10.1111/bpa.12427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martí E, Pantano L, Bañez-Coronel M, Llorens F, Miñones-Moyano E, Porta S et al (2010) A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38:7219–7235. https://doi.org/10.1093/nar/gkq575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin M (2013) Cutadapt removes adapter sequences from high-throughput sequencing reads kenkyuhi hojokin gan rinsho kenkyu jigyo. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  47. Merienne N, Meunier C, Schneider A, Seguin J, Nair SS, Rocher AB et al (2019) Cell-type-specific gene expression profiling in adult mouse brain reveals normal and disease-state signatures. Cell Rep 26:2477-2493.e9. https://doi.org/10.1016/j.celrep.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  48. Murmann AE, Gao QQ, Putzbach WE, Patel M, Bartom ET, Law CY et al (2018) Small interfering RNAs based on Huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Rep. https://doi.org/10.15252/embr.201745336

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ (2011) CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 39:8938–8951. https://doi.org/10.1093/nar/gkr608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64:300–316. https://doi.org/10.1002/glia.22930

    Article  PubMed  Google Scholar 

  51. Novati A, Hentrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Deglon N et al (2018) Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Sci Rep 8:5803. https://doi.org/10.1038/s41598-018-24243-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pantano L, Estivill X, Marti E (2010) SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res 38:e34. https://doi.org/10.1093/nar/gkp1127

    Article  CAS  PubMed  Google Scholar 

  53. Pantano L, Estivill X, Marti E (2011) A non-biased framework for the annotation and classification of the non-miRNA small RNA transcriptome. Bioinformatics 27:3202–3203. https://doi.org/10.1093/bioinformatics/btr527

    Article  CAS  PubMed  Google Scholar 

  54. Pantano L, Friedlander MR, Escaramis G, Lizano E, Pallares-Albanell J, Ferrer I et al (2016) Specific small-RNA signatures in the amygdala at premotor and motor stages of Parkinson’s disease revealed by deep sequencing analysis. Bioinformatics 32:673–681. https://doi.org/10.1093/bioinformatics/btv632

    Article  CAS  PubMed  Google Scholar 

  55. Patro R, Mount SM, Kingsford C (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol 32:462–464. https://doi.org/10.1038/nbt.2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pattison LR, Kotter MR, Fraga D, Bonelli RM (2006) Apoptotic cascades as possible targets for inhibiting cell death in Huntington’s disease. J Neurol 253:1137–1142. https://doi.org/10.1007/s00415-006-0198-8

    Article  CAS  PubMed  Google Scholar 

  57. Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whetsell WOJ et al (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 20:198–202. https://doi.org/10.1038/2510

    Article  CAS  PubMed  Google Scholar 

  58. Richfield EK, Maguire-Zeiss KA, Vonkeman HE, Voorn P (1995) Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann Neurol 38:852–861. https://doi.org/10.1002/ana.410380605

    Article  CAS  PubMed  Google Scholar 

  59. Rikani AA, Choudhry Z, Choudhry AM, Rizvi N, Ikram H, Mobassarah NJ et al (2014) The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann Neurosci 21:112–114. https://doi.org/10.5214/ans.0972.7531.210308

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620

    Article  CAS  PubMed  Google Scholar 

  61. Rue L, Banez-Coronel M, Creus-Muncunill J, Giralt A, Alcala-Vida R, Mentxaka G et al (2016) Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels. J Clin Investig 126:4319–4330. https://doi.org/10.1172/JCI83185

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rué L, López-Soop G, Gelpi E (2013) Brain region-and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington’s disease. Neurobiol Dis 52:219–228

    Article  PubMed  Google Scholar 

  63. Saavedra A, García-Martínez JM, Xifró X, Giralt A, Torres-Peraza JF, Canals JM et al (2010) PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington’s disease striatum. Cell Death Differ 17:324–335. https://doi.org/10.1038/cdd.2009.127

    Article  CAS  PubMed  Google Scholar 

  64. Saavedra A, Giralt A, Rué L, Xifró X, Xu J, Ortega Z et al (2011) Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci 31:8150–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saikia M, Krokowski D, Guan B-J, Ivanov P, Parisien M, Hu G et al (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287:42708–42725. https://doi.org/10.1074/jbc.M112.371799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172

    Article  CAS  PubMed  Google Scholar 

  67. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci USA 110:2366–2370. https://doi.org/10.1073/pnas.1221891110

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG et al (2014) CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157:651–663. https://doi.org/10.1016/j.cell.2014.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmieder R, Lim YW, Edwards R (2012) Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics 28:433–435. https://doi.org/10.1093/bioinformatics/btr669

    Article  CAS  PubMed  Google Scholar 

  70. Steibel JP, Poletto R, Coussens PM, Rosa GJM (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94:146–152. https://doi.org/10.1016/j.ygeno.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  71. Swinnen B, Robberecht W, Van Den Bosch L (2020) RNA toxicity in non-coding repeat expansion disorders. EMBO J 39:e101112. https://doi.org/10.15252/embj.2018101112

    Article  CAS  PubMed  Google Scholar 

  72. Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14:2095–2103. https://doi.org/10.1261/rna.1232808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Torres-Peraza JF, Giralt A, Garcia-Martinez JM, Pedrosa E, Canals JM, Alberch J (2008) Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling. Neurobiol Dis 29:409–421. https://doi.org/10.1016/j.nbd.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  74. Tsoi H, Lau TC-K, Tsang S-Y, Lau K-F, Chan HYE (2012) CAG expansion induces nucleolar stress in polyglutamine diseases. Proc Natl Acad Sci USA 109:13428–13433. https://doi.org/10.1073/pnas.1204089109

    Article  PubMed  PubMed Central  Google Scholar 

  75. Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci USA 97:8093–8097. https://doi.org/10.1073/pnas.110078997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384

    Article  CAS  PubMed  Google Scholar 

  77. Wang L-C, Chen K-Y, Pan H, Wu C-C, Chen P-H, Liao Y-T et al (2011) Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cell Mol Life Sci 68:1255–1267. https://doi.org/10.1007/s00018-010-0522-4

    Article  CAS  PubMed  Google Scholar 

  78. Yang S, Yang H, Huang L, Chen L, Qin Z, Li S et al (2020) Lack of RAN-mediated toxicity in Huntington’s disease knock-in mice. Proc Natl Acad Sci USA 117:4411–4417. https://doi.org/10.1073/pnas.1919197117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu Z-X, Li S-H, Evans J, Pillarisetti A, Li H, Li X-J (2003) Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J Neurosci 23:2193–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish government through the Spanish Ministry of Economy and Competitiveness (MINECO) and the Fondo Europeo de Desarrollo Regional (FEDER) (Project SAF2017-88452-R to EM and PID2019-106447RB-100 to EPN). We acknowledge support of the Spanish Ministry of Science Innovation and Universities through the “Maria Maeztu Unit of Excellence Program”. We thank the staff of the Genomics Unit and the Bioinformatics unit at the CRG for RNA-seq performance and analysis, and A. López and M.T. Muñoz for their technical support. AGC is supported by a fellowship from the Fundación Tatiana Pérez de Guzmán el Bueno.

Author information

Authors and Affiliations

Authors

Contributions

JCM, AGC, VV, EPN, and EM designed the experimental approaches. JCM, AGC, VV, MGdH, MSB, AGV, CN, MM, FL, and DDL performed experiments. JCM, AGC, VV, LP, GE, EPN, and EM analyzed and interpreted the data. All authors made intellectual contributions to the experimental design and discussion. EPN and EM coordinated the study, and JCM and EM wrote the manuscript.

Corresponding authors

Correspondence to Esther Pérez-Navarro or Eulàlia Martí.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creus-Muncunill, J., Guisado-Corcoll, A., Venturi, V. et al. Huntington’s disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol 141, 565–584 (2021). https://doi.org/10.1007/s00401-021-02272-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02272-9

Keywords

Navigation